

18th
European
Weed
Research
Society
Symposium

EWRS 2018

17-21 June 2018 Ljubljana, Slovenia

New approaches for smarter weed management

Book of Abstracts

www.ewrs2018.org

S08-P Herbicide Resistance – POSTER PRESENTATIONS	
Quick and whole-plant pot assay for detection ACCase herbicides resistance in Avena sterilis L.	148
Abdullatief Abdurruhman , Cukurova University, Turkey	
ALS resistant Apera spica venti - growing problem in Lithuania Ona Auskalniene , Institute of Agriculture, LAMMC, Lithuania	149
Physiological Response of Amaranthus palmeri Multiple Resistant to Glyphosate and ALS inhibitors María Barco Antonanzas , Universidad Pública de Navarra, Espana, Spain	150
Cross resistance patterns of Echinochloa spp. populations among rice herbicides Isabel Calha , INIAV, Portugal	151
Investigating the distribution and herbicide sensitivity of UK arable brome weeds Laura Davies , ADAS, United Kingdom	152
High-throughput detection of ALS-based resistance in the tetraploid common groundsel (Senecio vulgaris) Christophe Délye , INRA, France	153
Old foe, new Treat? Elucidation of Sorghum halepense response to ACCase-inhibiting herbicides Ofri Gerson , Hebrew University of Jerusalem, Israel	154
False cleavers (Galium spurium L.) with target-site resistance to ALS inhibiting herbicides in Greece Vaya Kati , Benaki Phytopathological Institute, Greece	155
Derived Polymorphic Amplified Cleaved Sequence (dPACS): a novel procedure for detecting known SNPs/DIPs Shiv Shankhar Kaundun , Syngenta, United Kingdom	156
Apera spica-venti biotype from the Czech Republic resistant to three herbicide modes of action Pavlina Kosnarova , Czech University of Life Sciences Prague, Czech Republic	157
African biotypes of Lolium rigidum resistant to ALS and ACCase inhibiting herbicides Pavlina Kosnarova , Czech University of Life Sciences Prague, Czech Republic	158
Estimation of herbicide resistance in Korean paddy fields Jeongran Lee , National Institute of Agricultural Sciences, South-Korea	159
Johnsongrass (Sorghum halepense) resistance to ACCase inhibiting herbicides in Serbia Goran Malidža , Institute of Field and Vegetable Crops, Serbia	160
Complex Amaranthus spp. populations infesting soybean fields under ALS inhibitor selective pressure Andrea Milani, Universita di Padova, Italy	161

Cross resistance patterns of Echinochloa spp. populations among rice herbicides <u>Isabel Calha</u> INIAV, OEIRAS, Portugal

In Portugal, *Echinochloa* species are the major troublesome weeds in rice. One hundred percent of paddy rice area is treated annually with ALS-and ACCase-inhibiting herbicides. Do to high selection pressure, resistance to penoxsulam was confirmed in *E. phyllopogon* in 2014 in Tagus river valley. To analyze the distribution of resistance in other rice producing areas – Mondego and Sado – a screening process was carried out in 2016.

Seed samples were collected from the affected area and tested. The first screening of 16 populations, to assess the sensitivity of *Echinochloa* spp. to penoxsulame was carried out in a growth chamber dose response study (0,01 to 1000 g L⁻¹). Root length was assessed 21 DAT and EC₅₀ values were estimated using non-linear regression. In whole plant bioassays resistance indices (RI=ED₅₀ R/ ED₅₀ S) were calculated for penoxsulam and to other ALS- and ACCase –inhibiting herbicides to assess for possible NTSR.

A susceptible population from each region ($EC_{50} = 0.16 \text{ mg L}^{-1}$) was used as reference. For the screening bioassays 50 % of *E. phyllopogon* populations from Sado rice fields (south) were confirmed resistant (R) to penoxsulam (EC50 values 0,66 to 7,01 mg L $^{-1}$). In Mondego rice fields (center) higher values of EC_{50} (1,22 to 46,5 mg L $^{-1}$) and more populations were R accounting for 90 % of the total. In dose-response bioassays with whole plant there were no cross resistance to bispiribac-sodium, cyalofope-butyl and profoxydim for all populations.

From 16 populations of *Echinichloa phyllopogon* analysed eleven were confirmed R to penoxsulam with RI ranging from 3,8 to 44,4 in Sado and 5 to 134,5 in Mondego.. Rice fields from Center of Portugal, account for 90 % of resistance cases. There were no cases of cross resistance among ALS and ACCase –inhibiting herbicides, suggesting TSR as the possible mechanism responsible for resistance.